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Laser-cooled atoms are used as freefall test masses. 
The gravitational acceleration on atoms is measured 
by atom-wave interferometry. The fundamental 
concept behind atom interferometry is the quantum 
mechanical particle-wave duality. One can exploit the 
wave-like nature of atoms to construct an atom 
interferometer based on matter waves analogous to 
laser interferometers.  
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A cloud of laser trapped and cooled Cs 
atoms in magneto-optical trap, with cloud 
fluorescence in false color.


Illustration of Mach-Zehnder atom-wave interferometer which 
is realized by a sequence of laser pulses.


Laser Cooling and Atom Interferometry


Technology Overview: Cold Atom Sensors
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Rotational sensing

Laboratory AI gyroscopes have demonstrated 
a sensitivity of 6 × 10–10 rad s–1 Hz–1/2.  [T. L. 
Gustavson et al., Class. Quantum Grav. 17, 
2385 (2000)]


Phase shift due to acceleration: ΔΦ = 2k a T2�

Acceleration/gravity sensing

Laboratory AI accelerometers have measured g with a resolution 
of 2 × 10–8g in 1 s and 3 × 10–9g overall precision. [A. Peters et 
al., Metrologia 38, 25 (2001)]
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 = 2 k T
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There are also many related atom interferometer devices with BEC and cold atoms in waveguides …
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Inertial Sensing with Atom Interferometers
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Sagnac effect: ΔΦ = 8π(A • Ω) ⁄ λv
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Inertial Phase Shifts in Atom Interferometers


Atomic fountain on ground

��
ΔΦ = 2k a T2 �

With over 106 atoms, the shot-noise 
limited SNR ~ 1000.�
Per shot sensitivity = 2 × 10–10⁄ T2 m/s2.�

For atom interferometer 
accelerometer�

counter-
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•  Independent of atom initial velocity.�
•  The laser wavenumber k is the only 

reference parameter.�
•  Sensitivity increases with T2.�

Great enhancement of the 
sensitivity can be gained in the 

microgravity environment in space! 
10–13g Hz–1/2 possible in microgravity 
with ~10 s interrogation time.�

N. Yu, J. M. Kohel, L. Romans, and L. Maleki, “Quantum Gravity Gradiometer Sensor for Earth Science Applications,” NASA Earth Science and Technology 
Conference 2002. Paper B3P5. Pasadena, California (June 2002). �
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Space-Based Atomic Gravity Gradiometer


Advantages in space (microgravity 
environment):


•  Very long interrogation time possible, 
resulting in extremely high sensitivity.

(single satellite, 5 x 10–4 E/Hz1/2)
•  Long baseline operation possible.

(100 m to 200 km, 5 x 10–5E/Hz1/2 to 
3 x 10–8 E/Hz1/2)
•  Multi-component sensing possible.

(full tensor acquisition, allowing 3D mapping)
•  Helps reduce many systematic effects.

g(z)�

Φ1 = 2k(g1 + a)T2�

Φ2 = 2k(g2 + a)T2�

ΔΦ = 2k(g1 – g2)T2�
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Gravity gradient unit E = Eötvös = 10–9 (m/s2)/m.�
1 E gradient is approximately equal to the gradient resulting 
from from one adult male measures at at distance of 1-m; 
average gravity gradient near Earth’s surface is 3300 E.�

Precision orthogonal reflector
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AI Technology Development for Space 


Atom interferometer in 0g 
flight, I.C.E. collaboration, 
France�
�

Drop tower Experiments with cold atoms 
and BEC, Quantus collaboration, DLR�
�

JPL atom interferometer gravity gradiometer development�
�
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Advanced Gravity Missions for Earth Science
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 Geodesy

 Earth and Planetary Interiors


–  Lithospheric thickness, composition


–  Lateral mantle density heterogeneity

–  Deep interior studies

–  Translational oscillation between core/mantle


 Earth and Planetary Climate Effects

–  Oceanic circulation

–  Tectonic and glacial movements


–  Tidal variations

–  Surface and ground water storage

–  Polar ice sheets

–  Earthquake monitoring


GOCE 

-  Cold atoms as truly drag-free test masses 
-  Gravity gradiometer (better resolution) 
-  Simpler mission architecture (single spacecraft) 
-  More flexible orbits and satellite constellation 
  (more comprehensive data for data analyses) 
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Precision inertial measurements for 
advancement of science


•  Test of Einstein’s Equivalence Principle 
with differential acceleration 
measurements of two atomic species


•  Frame-dragging test of the General 
Relativity Theory with two pairs of atom 
gyroscopes and a precision star tracker


•  Large scale gravity investigation


•  Tests of inverse square law


•  Gravitational wave detection


Gravitational wave 
detection


Inverse square law at 
short distances


Spin-gravity coupling


+

+

+
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Quantum Interferometer Test 
of Equivalence Principle


Matter Wave Explorer of 
Gravity


Precision measurements of 
Lense-Thirring effect
Quantum physics exploring 

gravity in the outer solar system


Fundamental Physics Experiments in Space
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LISA Drag-Free Atomic Reference DRS Concept


LISA accelerometer 
and optics payload  

laser 

LISA “accelerometer” 
double retro-mirror 

Ultra-cold atom 
ensemble (AI) 

AI laser 

Displacement jitters of the mirrors completely cancel, thereby reducing the spacecraft 
“accelerometer” drag-free requirements.

LISA Interferometer Measurement System 
(IMS) 

double retro-
mirror 

x1 y1 y2 x2 

X = x2 (t) x1(t) = x2 (t) y2 (t)[ ]+ y2 (t) y1(t)[ ]+ y1(t) x1(t)[ ]

AI1 AI2 

Measured by AI1 Measured by AI2 Measured by IMS 

AI1 AI2

double retro-
mirror 
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JPL’s focus is toward space applications using cold atoms as freefall test masses …


Ground-based transportable instrument is 
an interim technology development step


Atom interferometer specific

•  Compact high-flux cold atom source

•  Sealed ultra-vacuum system techniques

•  Direct detection configuration

•  0-g compatible compact physics package design

•  Dynamic range enhancement

•  Robust and flexible optics system architecture

•  Atom interferometer as atomic drag-free reference


General relevant competence
• Space cold atom system development heritage
• Related atomic clock development experience and 

competence
• Precision optical instrument development capability
• Core competence in Earth and planetary gravity 

measurements and instruments.


Precision Measurements with Cold Atoms at JPL 
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Transportable Gravity Gradiometer at JPL
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Left:  Dual atom interferometer-based gravity 
gradiometer in the laboratory.  The magnetic shields 
around the upper sensor have been partially removed 
to reveal the vacuum enclosure and laser optics.  
Below:  Stacked array of laser amplifier modules 
from the laser and optics system. 
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Gravity Gradiometer Data and Sensitivity Analysis
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Parametric plot of atom interferometer signals in the gravity gradiometer (left) and Allan 
deviations for the relative phase with and without removing a linear drift (right). N = 5400.
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atom cloud at μK 
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Atoms are stable clocks (laser-based atom optics)�
 atom-wave interferometer 

Freefall test mass Displacement Detection Atomic system stability 

NIST  
atomic clock 

+ + 

•  Use identical freefall atomic particles as ideal test masses

•  Identical atomic particles are collected, cooled, and released free fall in vacuum with no 

external perturbation other than gravity/inertial forces.

•  Laser-cooling and trapping are used to manipulate the cold atomic test masses.

•  No cryogenics and no mechanical moving parts.


•  Matter-wave interference for displacement measurements

•  Displacement measurements through quantum interference, pm/Hz1/2 when in space.


•  Intrinsic high stability of atomic system

•  Use the very same atoms and measurement schemes as those for the most precise atomic 

clocks, allowing high measurement stabilities.

•  Enable orders of magnitude sensitivity enhancement when in space


•  Microgravity environment offers long interrogation times with atoms, orders of magnitude 
higher sensitivity compared terrestrial measurements.


Conclusion: Cold Atomic Sensors in Space
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POC for further information: 
Dr. Nan Yu 
email: nan.yu@jpl.nasa.gov 
phone: (818) 354-4093 

Thank You!
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